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Abstract

The use of airborne Light Detection And Ranging (LiDAR) technology o�ers rapid high
resolution capture of surface elevation data suitable for a large range of applications. The

representation of both the ground surface and the features on that surface necessitates the
removal of these surface features if a ground surface Digital Elevation Model (DEM) product
is to be produced. This paper examines methods for extracting surface features from a Digital

Surface Model (DSM) produced by LiDAR. It is argued that for some applications the
extracted surface feature layer can be of almost equal importance to the DEM. The example
of ¯ood inundation modelling is used to illustrate how a DEM and a surface roughness layer

could be extracted from the original DSM. The potential for re®ning surface roughness esti-
mates by classifying extracted surface features using both topographic and spectral char-
acteristics is considered using an Arti®cial Neural Network to discriminate between buildings
and trees. # 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Digital Elevation Models (DEMs) have varied and well-documented applications
(Burrough & McDonnell, 1998) including visual impact assessment, hydrological
modelling, ¯ood prediction and site suitability analysis. The automated creation of
elevation models from remotely sensed data can o�er a representation of both the
ground surface and the objects on that surface. Such representations, often termed
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Digital Surface Models (DSMs) o�er the possibility of extracting the elevations of
surface features to leave the ground surface DEM. For many applications in the
urban environment this separation of above-surface feature information from
ground information can o�er a useful combination of data sets. For example,
detailed knowledge of the elevation of the ground surface is essential for predicting
¯ood inundation and the potential e�ects of sea level rise, whilst a detailed model
of the man-made objects that would be a�ected is essential for property owners,
planning authorities and insurance companies. This paper discusses several such
applications and focuses on how Airborne Laser Scanning devices can provide
digital surface models which can be used to separate surface features from
the ground for modelling ¯ood inundation from rivers in urban and semi-urban
environments.
DEMs can be constructed by digitising existing topographic maps (Gao, 1995,

1997) or by using stereoscopic aerial photographs. With the advance of digital
photogrammetry, DSMs can be created using stereo image matching techniques
(Smith & Smith, 1996). Many authors (Abanmy, Khamees, Scarpace & Vonderohe,
1995; Jaafar & Priestnall, 1998) have considered the potential for these DSMs to
provide the heights of surface features such as buildings.
Recently LiDAR (Light Detection And Ranging) has become an established

technique for deriving geometric information in three dimensions. The system is seen
to o�er a relatively quick technique for extracting accurate surface models and thus
o�ers the potential for the creation of DEMs and other mapping products (Kost,
Loddenkemper & Petring, 1996; Lohr, 1998). LiDAR is considered to o�er several
potential bene®ts for the creation of DSMs:

1. O�ers a cost-e�ective way of producing DSMs with an accuracy in the order of
decimetres (Lohr, 1998), and is less prone than other remote measuring sys-
tems to di�culties in measurement due to variations in weather.

2. O�ers precise de®nition of surface features through a very high density of
recorded points, allowing the creation of gridded DSMs with cell resolutions
of 1±3 m (Lohr, 1998). Automatic DSM generation using digital photo-
grammetry has problems with feature de®nition because of surface smoothing
and the di�culty of controlling the image-matching algorithms (Smith, 1997;
Smith & Waldram, 1996; Smith, Smith, Tragheim & Holt, 1997).

Reliable and accurate three-dimensional models of the urban environment are
required by many applications and constructing these models has been an active
research ®eld involving a diversity of approaches using remotely sensed data (Gruen,
Baltsavias & Henricsson, 1997). A comparison of photogrammetry and LiDAR
(Baltsavias, 1999) considers these technologies not merely competitive but com-
plementary and suggests that their close integration should be encouraged.
Nevertheless, the production of DSM products using LiDAR is a quicker, more
automated process and coupled with the high density of point measurements can
o�er greater de®nition of urban features, these factors encouraging research into the
automated extraction and characterisation of surface features.
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The degree to which precisely de®ned surface features need to be extracted and
categorised depends upon the application. The reconstruction and visualisation of
three-dimensional urban models, for example, requires precise de®nitions of build-
ing walls and roofs and much research e�ort has focused on their automated
extraction (Gruen, Kubler & Aqouris, 1995). Typically, utilising raw laser data or
1-m DSMs, buildings have been identi®ed, removed and replaced with Computer
Aided Design (CAD)-generated building objects, often with the aid of existing
building outlines or through the use of additional optical information (Haala &
Brenner, 1997, 1999). With CAD objects placed on the DEM surface, textures can
be mapped onto individual faces of these objects giving the high levels of photo-
realism necessary for many urban planning visualisation exercises.
For land use change detection the incorporation of building heights o�ers impor-

tant extra information over and above that o�ered by optical sensors alone (Priestnall
& Glover, 1998). Change detection between map vector outlines and building edges
from newer imagery may be possible under certain conditions but processing can be
complex. Due to the nature of gradient maps derived from the LiDAR data, as shown
in Fig. 1, the identi®cation of building edges becomes possible. Although not sensitive
to lighting conditions, as are edges extracted from optical sensors, edge extraction
from laser data is complicated by the presence of objects in close proximity to build-
ings such as parked vehicles and trees. Land use-change detection need not, however,
rely upon the recognition of individual surface features. As the capture of laser data
becomes more routine and time-series data sets become available, then di�erence

Fig. 1. Detail from a slope map derived from a LiDAR Digital Surface Model (DSM), the brighter cells

representing steeper slopes.
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maps produced by subtracting successive DSMs should prove a successful means of
urban change detection without the requirement to recognise features at every stage
(Murakami, Nakagawa, Hasegawa, Shibata & Iwanami, 1999).
For certain applications the extraction of discrete geometrically precise objects is

less important than the separation of the surface feature layer from the underlying
ground elevations. Laser scanning can o�er a fast, cost-e�ective alternative to con-
ventional methods of producing DEMs from digitised contours or stereo plotters.
One application for which an accurate DEM is important is the modelling of ¯ood
inundation from rivers. For ¯ood hazard mapping over large areas ground DEMs
derived from contour data are often used, but for more detailed modelling of ¯ood
inundation the use of LiDAR derived surface models can be considered. DEMs
created from contour data are reliant upon a suitably small contour interval and a
large number of surveyed spot heights in order to represent the ground surface
faithfully. For ¯oodplain mapping and modelling, laser scanning o�ers the chance
to represent the ground surface at ®ner resolutions and, therefore, to predict the
extent and depth of ¯ood inundation more precisely (Marks & Bates, 2000). Gomes
Pereira and Wicherson (1999) consider the potential of LiDAR for supplying topo-
graphic data for the management of ¯uvial zones. A simple simulation of river
¯ooding using a LiDAR DSM where objects impacted by the ¯ooding are clearly
seen is shown in Fig. 2. Models of ¯ood inundation can be one-dimensional where
cross-sections extend across the ¯oodplain from points along the river channel, each
section being assigned a roughness coe�cient. Where a one-dimensional model pre-
dicts signi®cant ¯oodplain ¯ow a two-dimensional model can be used to give more
reliable estimates of ¯ood depth and extent. The ¯oodplain is represented as a tri-
angulated surface where each triangle is assigned a roughness coe�cient (such as
Mannings n) which is typically estimated manually using ®eld or photographic
observations (Chow, 1973).
The representation of a more complete and precise coverage of surface roughness

coe�cients over the ¯ood plain, coupled with a high resolution elevation surface,
would o�er improved data provision for this modelling process. LiDAR could pro-
vide such data if the surface features are removed to leave the ground elevation
surface, and in so doing the spatial distribution of surface roughness could be esti-
mated by summarising the texture of the features removed.

2. Rationale

Attempts to separate surface features from the ground elevations work on the
assumption that these features are higher than the surrounding surface (Jaafar &
Priestnall, 1999; Weidner & Forstner, 1995). If the above-surface features can be
identi®ed and removed from the DSM, then the ground elevations for the gaps left
by the removed features can be replaced by interpolating between DSM elevation
values around the edge of each gap.
To identify the above surface features a `reference surface' which is lower than

the LiDAR DSM can be subtracted from the DSM, leaving a `residual surface'
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representing the locations of all above-surface features. The areas de®ned in this
residual surface can be used to mask out the equivalent areas in the DSM. The ®nal
stage involves interpolation to ®ll in the gaps masked out of the DSM, resulting in
the ground DEM.
This study investigates the above procedure with particular emphasis on the

creation of a reference surface using a ®ltering process to smooth the DSM surface.
The sensitivity of the results to varying the ®lter size used was an important aspect
of the study. Further discussion of this technique will be outlined in the Methodol-
ogy section.
Although the isolation of the above-surface features from the ground surface is

paramount in this study, the classi®cation of these features based on topographic
and spectral character is discussed. The use of an Arti®cial Neural Network
(ANN) to extract features based upon their topographic character alone has been

Fig. 2. A simple river ¯ooding simulation using a LiDAR Digital Surface Model (DSM).
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considered (Jaafar, Priestnall, Mather & Vieira, 1999). The most simplistic ANN
architecture consists of n inputs connected to a central computational unit and
produces one output. The n inputs are summed and a threshold determines whether
or not the output is produced (Cawsey, 1998). More complex structures allow sev-
eral alternative outputs (in this case ground, building or tree) dependent upon the
inputs provided. The ability of an ANN to combine inputs derived from a variety of
sources and to explore the relative importance of these inputs as discriminators of
surface feature types is seen as an important avenue for continuing research.

3. The data

LiDAR is based on sequential laser range measurements from an airborne sensor
to points on the ground surface. Knowing the precise position and orientation of
the airborne platform, from di�erential Global Positioning Systems and Inertial
Navigation Systems, the laser beam is re¯ected o� the ground surface to enable the
three-dimensional positions of the surface points to be determined with decimetre
accuracy (Hug, 1997; SoÈ hne, Heinze, Hug & KaÈ lberer, 1993). It is reported that an
accuracy of the order of 0.2 m horizontally (x,y) and 0.1 m vertically (z) can be
achieved in the production of DSMs (Lohr, 1998) from LiDAR depending on the
system used. The nature of the surface models produced allows surface features to be
distinctly de®ned and, consequently, the identi®cation and extraction of these fea-
tures both as discrete objects and in terms of roughness coe�cients becomes a reality.
In this study, the LiDAR data used are those produced by the Environment

Agency and the study area is an area of the Trent ¯oodplain at Newark-on-Trent,
Nottinghamshire, UK. The study area consists of an undulating topography that
includes man-made objects and natural features such as trees. The spacing of the
surveyed points is approximately 2.5 m and the ®nal gridded elevation matrices used
for analysis have a spatial resolution of 2 m. The DSMs are referenced to the Ord-
nance Survey of Great Britain (OSGB36) and the heights are transformed to
Ordnance Survey Datum Newlyn (OSDN). In the data-acquisition phase, the swath
angle used is �19� and the ¯ying height approximately 700 m.
The precise large-scale geometry of building objects as represented in the 2-m

DSM (as illustrated in Fig. 1) cannot be extracted reliably but the surface texture is
su�ciently well de®ned to allow the ®ltering procedure described in Section 2 to be
implemented. Although the present study uses the surface topography alone, the
availability of multi-spectral remotely sensed imagery o�ers additional potential for
discriminating trees from buildings (Haala & Brenner, 1999) and is the focus of
ongoing investigations.

4. Methodology

The task is to separate surface features from ground elevations but the speci®c
techniques very much depending upon the requirements of the application. For
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example, in the case of three-dimensional urban model reconstruction and mapping
it may be appropriate to extract and generalise edges from the gradient image in a
similar way to image edges in previous studies (Priestnall & Glover, 1998). Gen-
eralised edge features can be grouped to form a candidate building object, supported
by height information `internal to', and `external to' the building boundary. Tech-
niques such as this rely on high-resolution laser scanning data using either raw point
measurements or gridded DSMs with a resolution of around 1 m. For example,
Maas and Vosselman (1999) present algorithms to segment individual roof faces of
buildings based upon clusters of common aspect values present in the triangulated
data set.
The approach taken by the current study does not attempt to extract building

geometry but focuses upon extracting the whole surface feature layer with a view to
characterising the features present. Several approaches to `stripping' this surface
feature layer have been investigated. The Environment Agency, Bath, UK, have
explored the potential of using 3�3 variance ®lters to identify areas above a certain
threshold limit equivalent to a variance of 2 m (or 66.6� gradient). These areas
are bu�ered and the resulting mask is used to remove areas of the DSM which are
replaced by re-interpolating elevations across the gaps.
This study presents a modi®ed approach for isolating surface features. Working

on the assumption that man-made objects and natural features stand above the
surrounding surface a lower reference surface can be subtracted from the DSM,
leaving a residual surface representing all surface features (Jaafar & Priestnall, 1998,
1999; Weidner & Forstner, 1995). An important issue at this point is the method
used to create the reference surface. In the ®rst part of the investigation, the e�ects
of ®ltering on the LiDAR DSM using a mean ®lter of varying size are investigated
with a view to deriving the most appropriate smoothed `reference' surface. The
standard deviations (s) for the derived surfaces are then computed for comparative
purposes. The main aim of this ®ltering exercise is to understand the smoothing
e�ects of the DSM in the creation of the reference surface. As would be expected the
value for s decreases with respect to the ®lter size used, as shown in Fig. 3.
Choosing an appropriate ®lter size based upon this e�ect alone would be di�cult.

In order to assist the choice of ®lter size the e�ect must be understood with respect
to the features on the DSM being smoothed. To achieve this an unsupervised clas-
si®cation of the DSM elevation data is carried out. This process of thresholding
results in a pre-de®ned number of clusters, in this case ®ve clusters being assigned to

Fig. 3. Standard deviation (s) with respect to mean ®lter size.
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ensure the separation of the three main entities (the terrain surface, buildings and
trees). The choice of the number of clusters varies according to the range of eleva-
tion values in the DSM and the number of entities to be di�erentiated. The polygons
created as the result of the unsupervised classi®cation are shown in Fig. 4.
In order to understand the e�ect of various sizes of mean ®lters on the smoothing

of features on the LiDAR DSM, well-de®ned regions generated by the unsupervised
classi®cation that represent trees, buildings and bare land are randomly identi®ed.
In this study, the sample sizes for trees, buildings and bare land regions selected are
32, 33 and 6, respectively. The mean s for regions of each type are then computed
using a range of ®lter sizes. The e�ect on s for trees, buildings and bare land cor-
responding to various mean ®lter sizes is shown in Fig. 5.
From Fig. 5, it is found that the s for polygons representing trees and buildings

has a pronounced response as the ®lter size increases. In general, the mean s for the
tree and building polygons decreases steadily from approximately 5 to 2.5 m and
from 9 to 2 m, respectively. However, for the polygons representing bare land, an
increase of 4±6 m is experienced. Therefore, referring to Fig. 5, the `threshold' to
di�erentiate between bare land cover and `above' surface features could be identi-
®ed. The `reference surface' which is lower than the LiDAR DSM could be created
using any mean ®lter with window sizes between 11�11 and 25� 25. In this study
the 11�11 mean ®lter is applied to the LiDAR DSM to generate the `reference sur-
face'. The `reference surface' is then subtracted from the LiDAR DSM to isolate the
above-surface features. As a result of the subtraction, the above-surface features are
revealed as scattered regions (Jaafar & Priestnall, 1999) with positive elevation
values. However, it should be pointed out that the whole area corresponding to a
particular above-surface feature is not necessarily revealed after the subtraction. The
cross-section for a selected pro®le which depicts the e�ect of the subtraction between
the `reference surface' and the LiDAR DSM is shown in Fig. 6.

Fig. 4. Polygons created from the unsupervised classi®cation.
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Referring to Fig. 6, it may be seen that part of the above-surface feature may not
be revealed as positive elevation values as a result of the subtraction between the
`reference surface' and the LiDAR DSM. This is due to the elevation for the `refer-
ence surface' being higher than the LiDAR DSM near building edges as a result of
the smoothing process. This will result in negative elevation values for certain areas
in the residual surface. In order to minimise this e�ect, a 2-m bu�er zone is gener-
ated surrounding all the detected regions. The choice of a 2-m bu�er in this study
relates to the grid resolution used relative to the general density observed in the
urban features in this area. However, there might be cases (such as large buildings)
where the 2-m bu�er is insu�cient to account for this boundary e�ect. Therefore, to
enhance the detection procedure of surface features, areas with gradients in excess of
50� are extracted and a mask is created in combination with the bu�er zone. Finally,
the DEM is constructed by replacing DSM elevations coincident with the mask with
`no data', and interpolating across the gaps, the overall approach being summarised
in Fig. 7.
The original LiDAR DSM and the derived DEM are shown in Fig. 8. The

e�ectiveness of this process in terms of reproducing an `accurate' DEM is not

Fig. 6. The e�ect of subtracting the `reference surface' from the LiDAR Digital Surface Model (DSM).

Fig. 5. The e�ects on standard deviation (s) with respect to ®lter sizes for di�erent feature types.
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investigated in this study; however, techniques to evaluate the sensitivity of the
resulting DEM to various ®ltering procedures is discussed in Jaafar et al. (1999).
For certain applications the derived DEM may be the only data set required;

however, the extracted surface feature layer o�ers useful additional information for
many applications. For example, the management of ¯uvial zones can require
modelling of ¯ood ¯ow from rivers and the prediction of the extent, depth and
duration of water on the ¯oodplain. Two-dimensional hydraulic models typically
represent the ¯oodplain using a mesh of triangular units, incorporating ground sur-
face elevation as a basis for predicting the extent and depth of ¯ood inundation. In
addition a roughness coe�cient is attributed to each triangular unit. The high den-
sity of LiDAR measurements not only o�ers higher resolution elevation data for
¯oodplain modelling but provides a source of high-resolution surface roughness
information. Conventional methods of estimating roughness parameters such as
Mannings n (Chow, 1973) involve the potentially time consuming task of manual
approximation based upon observation of the general character of the surface, often
for large triangular spatial units. A map of classi®ed bands of surface roughness, as
shown draped over the DEM in Fig. 8, is a simple example illustrating the principle
of automating this parameter estimation procedure. Further re®nements to this
approach would involve the estimation of how penetrable surface features were to
¯ood ¯ow.
Having separated the DSM into a ground DEM and an extracted surface feature

layer, the potential for classifying this surface layer can be studied. The potential
role of an ANN in the overall processing of LiDAR DSM data has been considered
by Jaafar et al. (1999) but it is as a discriminator of features within the residual

Fig. 7. Outline methodology for constructing the Digital Elevation Model (DEM) from the LiDAR

Digital Surface Model (DSM).
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surface layer that it is thought to be most promising. The combination of the topo-
graphic characteristics of features with additional information such as the spectral
characteristics is seen to o�er a set of inputs which could discriminate, for example,
between buildings and trees. The uncertainty over the importance of the various
weightings to be attached to inputs suggests that an ANN could be a useful tool in
classifying surface features and therefore re®ning estimates of surface roughness.

5. Further research

Early research in exploring the use of an ANN has utilised the Stuttgart Neural
Network Simulation (SNNS) using a back propagation algorithm (Zell et al., 1994).
The major task is to identify an appropriate set of inputs to the network that will
discriminate between the classes (Evans, 1996; Kavzoglu & Mather, 1999; Mather,
1987). In this study, the classes to be di�erentiated are buildings, trees and the
ground surface and the approach followed is that suggested by Hirose, Yamashita
and Hijiya (1991). Initial trials using topographic indices alone such as the area,
standard deviation of elevation, mean slope and maximum elevation for features
within the residual surface proved unsuccessful. Additional information from the
multi-spectral Compact Airborne Spectrographic Imager operated by the Environ-
ment Agency is being used to provide additional inputs to the classi®cation process.
The forthcoming use of LiDAR sensors which detect a second laser return in

addition to the initial laser return will allow the degree to which objects are pene-
trable to be represented. This should o�er a useful additional input to the classi®-
cation process which should distinguish between solid objects such as buildings and

Fig. 8. The separation of the Digital Elevation Model (DEM) and surface roughness.
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less dense objects such as trees, a characteristic which is directly applicable to the
estimation of hydraulic roughness parameters for ¯ood inundation studies.
So far the techniques considered have used only remotely sensed data sources. The

availability of existing vector mapping would allow di�erent strategies to be pur-
sued. Large-scale vector building outlines could be used to classify one set of surface
features leaving other features to be assigned a non-building class and therefore an
appropriate roughness coe�cient. Finally the need for direct accuracy assessment to
validate DEM creation and surface feature classi®cation is a vital component of the
continuation of this research.

6. Conclusions

The nature of LiDAR data o�ers the potential for extracting surface information
®t for many applications. The extraction of discrete features such as buildings for
land use change and mapping purposes presents many research challenges. For
many applications, however, relatively simple ®ltering procedures can provide
information ®t for their purpose. The case of ¯ood inundation modelling illustrates
how surface features typical of urban land uses occupying the ¯oodplain can be
separated from the ground surface. Further classi®cation of this surface feature
layer based upon a combination of topographic and spectral information using an
ANN classi®er o�ers the potential for re®ning surface roughness parameters for
improved modelling of ¯ood ¯ow from rivers in semi-urban areas.
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